Automatically Selecting Strategies for Multi-Case-Base Reasoning

نویسندگان

  • David B. Leake
  • Raja Sooriamurthi
چکیده

Case-based reasoning (CBR) systems solve new problems by retrieving stored prior cases, and adapting their solutions to fit new circumstances. Traditionally, CBR systems draw their cases from a single local case-base tailored to their task. However, when a system’s own set of cases is limited, it may be beneficial to supplement the local case-base with cases drawn from external casebases for related tasks. Effective use of external case-bases requires strategies for multi-case-base reasoning (MCBR): (1) for deciding when to dispatch problems to an external case-base, and (2) for performing cross-case-base adaptation to compensate for differences in the tasks and environments that each case-base reflects. This paper presents methods for automatically tuning MCBR systems by selecting effective dispatching criteria and cross-case-base adaptation strategies. The methods require no advance knowledge of the task and domain: they perform tests on an initial set of problems and use the results to select strategies reflecting the characteristics of the local and external case-bases. We present experimental illustrations of the performance of the tuning methods for a numerical prediction task, and demonstrate that a small sample set can be sufficient to make high-quality choices of dispatching and cross-case-base adaptation strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Decision Modeling of Reverse Logistics System: A Multi-criteria Decision Making Model by using Hybrid Evidential Reasoning Approach and TOPSIS (TECHNICAL NOTE)

In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decis...

متن کامل

Ensemble case based learning for multi-agent systems

This monograph presents a framework for learning in a distributed data scenario with decentralized decision making. We have based our framework in MultiAgent Systems (MAS) in order to have decentralized decision making, and in Case-Based Reasoning (CBR), since the lazy learning nature of CBR is suitable for dynamic multi-agent systems. Moreover, we are interested in autonomous agents that colla...

متن کامل

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

Choosing a Case Base Maintenance Algorithm using a Meta-Case Base

In Case-Based Reasoning (CBR), case base maintenance algorithms remove noisy or redundant cases from case bases. The best maintenance algorithm to use on a particular case base at a particular stage in a CBR system’s lifetime will vary. In this paper, we propose a meta-case-based classifier for selecting the best maintenance algorithm. The classifier takes in a description of a case base that i...

متن کامل

Dispatching Cases versus Merging Case-Bases: When MCBR Matters

Multi-case-base reasoning (MCBR) extends case-based reasoning to draw on multiple case bases that may address somewhat different tasks. In MCBR, an agent selectively supplements its own case-base as needed, by dispatching problems to external case-bases and using cross-case-base adaptation to adjust their solutions for inter-case-base differences. MCBR is often advocated as a means to facilitat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002